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Figure 1: The interface of our visual system: (a) a control panel for adjusting sampling strategies, rates, and other parameters; (b)
a history panel displaying differences between sampling results; (c) a graph view showing node-link topology with heatmap overlay
for Attribute-Community difference distribution; (d) an Attribute-Isolation difference view presenting attribute changes via parallel
coordinate plot and area maps; (e) an Attributes-Node panel visualizing correlations between node attributes and topological
metrics through matrix heatmaps; (f) an Attribute-Path graph enabling visual exploration of attribute-path association changes.

ABSTRACT

With the increasing scale and complexity of graph data, graph sam-
pling has become a crucial dimensionality reduction technique,
while the evaluation of its effectiveness has also garnered signifi-
cant attention. However, traditional sampling evaluation methods
primarily focus on preserving topological structures while neglect-
ing the integrity of node attributes. To address this, we introduce
an attribute-aware evaluation framework for assessing graph sam-
pling differences. First, a novel taxonomy is proposed to categorize
sampling differences into two major types: Attribute-Isolation and
Attribute-Structure. The former is further divided into Attribute-
Distribution and Attribute-Correlation, while the latter includes
three subcategories: Attribute-Node, Attribute-Path and Attribute-
Community. Based on this, we design a set of computable metrics
to quantify each type of attribute-related differences. Furthermore,
we develop an interactive visualization system that integrates mul-
tiview visual modules to visualize sampling impacts on attributes
and structural correlations. Case studies and quantitative evalua-
tions demonstrate the effectiveness of our method in characterizing
the impact of different sampling strategies on attribute information
and aiding users in network analysis and strategy selection.

Index Terms: Graph sampling, graph difference, visual evalua-
tion.

1 INTRODUCTION

Attribute graphs can effectively model complex entity relationships
while incorporating supplementary data through node attributes
[40]. As these graphs gain prominence in social networks, bioin-
formatics, and finance [10, 51, 8], their increasing scale and com-
plexity impose significant computational and storage challenges on
traditional graph algorithms, hindering real-time performance and
scalability for downstream applications. Under these conditions,
various sampling strategies [20] have been developed to extract
representative subgraphs or node subsets, thus alleviating compu-
tational overhead. These strategies provide an effective means of
graph reduction, constituting a critical methodology for large-scale
graph analysis and visualization [47]. However, sampling inher-
ently omits subsets of nodes and edges, potentially distorting struc-
tural and attribute-related patterns. Such distortions may compro-
mise both the representativeness of the sampled graphs and the re-
liability of subsequent analyses.

Numerous metrics, including degree distribution [17], short-
est path [20], and clustering coefficient [48], have been pro-
posed to evaluate structural differences between the sampled graphs
and their original counterparts. However, conventional evaluation
frameworks predominantly focus on topological preservation while
overlooking alterations in node attribute information, which is a



critical oversight given the prevalence of attribute-rich nodes in
real-world networks. In social networks, for example, the nodes
typically contain demographic attributes (e.g., gender, age, educa-
tion level, and income)[56], while the protein nodes in bioinformat-
ics networks incorporate biological descriptors such as sequence
data and structural identifiers [38]. These attributes not only de-
fine graph semantics but also exhibit intrinsic correlations with net-
work topology that are essential for comprehensive network anal-
ysis [3]. The prevailing structural similarity paradigm fails to ac-
count for sampling-induced distortions in attribute distribution and
its structural interdependence, potentially yielding biased analytical
outcomes. For example, sampling strategies such as SB and FF pre-
serving structural features may amplify specific attribute categories
through selection bias, introducing systematic errors in downstream
tasks like node classification. This loss of latent information re-
mains undetectable by traditional structural metrics [23].

Therefore, this study aims to systematically assess and visu-
ally reveal information differences between the sampled and orig-
inal graph from the perspective of node attributes. Through mul-
tiple rounds of interviews with graph domain experts and synthe-
sis of their feedback, we concluded that this approach can help
researchers identify the sources of attribute differences in graph
sampling and inform strategy selection. We identify three core
challenges: CH1: How to establish a systematic attribute-centric
taxonomy that differentiates types while comprehensively covering
both intrinsic attribute variations and multi-granularity attribute-
structure consistency shifts, CH2: How to design quantifiable met-
rics to objectively assess sampling impacts on attribute information
and attribute-structure relationships and CH3: How to construct
visual mappings for diverse difference types to enable hierarchical
tracing from global distributions to local associations.

To address these challenges, we propose a systematic taxonomy
and quantification framework to evaluate differences between sam-
pled and original graphs by analyzing node attributes and their re-
lationships with topological structures. In addition, we develop a
visual analytics system to enable fine-grained analysis of sampling-
induced variations and facilitate source tracking of observed differ-
ences. Specifically, we categorize the impacts of graph sampling
on attributes into two classes: Attribute-Isolation, which focuses on
intrinsic attribute variations, and Attribute-Structure, which exam-
ines attribute-topology consistency. The Attribute-Isolation class
comprises two subcategories: Attribute-Distribution and Attribute-
Correlation. The Attribute-Structure class evaluates attribute-
topology coherence across three structural levels: Attribute-Node,
Attribute-Path, and Attribute-Community (CH1). Building on this
taxonomy, we design domain-specific quantification metrics to sys-
tematically measure differences across these categories, ensuring
a comprehensive and reproducible analysis (CH2). Furthermore,
we implement an interactive visual analytics system that integrates
multiview visual modules to holistically visualize sampling impacts
on attributes and structural correlations. The system supports hier-
archical exploration of differences, allowing users to progressively
investigate sampling effects from global trends to localized anoma-
lies while interactively tracing their root causes (CH3). The frame-
work’s effectiveness is ultimately verified through case studies and
quantitative evaluations. The contributions of our work are:

• We integrate node attributes into sampling difference analysis
and propose two major categories with finer subcategories to
establish a clear taxonomy for information comparison.

• We construct a suite of quantifiable metrics tailored to at-
tribute differences across the defined categories.

• We develop a visual analytics system that supports multiview
exploration to intuitively present hierarchical sampling differ-
ences and systematically facilitate fine-grained analysis.

2 RELATED WORK

2.1 Graph Sampling Technique
Graph sampling aims to extract representative subgraphs from
large-scale networks to reduce computational and storage costs
while preserving essential structures and attributes [46, 20, 2].
Sampling methods are typically categorized into node-based, edge-
based, and traversal-based approaches [20, 39]. Node-based sam-
pling selects a subset of nodes and retains the edges between them.
Random Node (RN) sampling chooses nodes uniformly at random
[17, 45], while importance-aware variants such as Random De-
gree Node (RDN) [4] and Random PageRank Node (RPN) [27]
prioritize nodes based on structural metrics. Edge-based sampling
focuses on selecting edges and including their incident nodes to
build subgraphs, with strategies like Random Edge (RE) [45, 31],
Random Node Edge (RNE) [27, 22], and Random Edge Node
(REN) [50, 36, 19] differing in sampling order and expansion logic.
Traversal-based methods explore the graph using random walks or
similar strategies, constructing subgraphs from visited nodes and
edges [20]. Random Walk Sampling (RWS) [29, 9] may suffer
from local trapping [26], leading to enhanced variants such as Ran-
dom Walk with Jump (RJ) [44, 49] for improved global coverage.
Other traversal strategies—including Breadth-First Sampling (BF)
[24, 25], Depth-First Sampling (DF) [11, 32], Snowball Sampling
(SB) [44, 18], and Forest Fire Sampling (FF) [28]—further enhance
structural preservation and connectivity.

Despite advances, evaluating subgraph representativeness re-
mains essential. We present an attribute-based framework to quan-
tify sampling distortions, enhanced by multi-view interactive visu-
alization for hierarchical exploration and strategy comparison.

2.2 Graph Sampling Evaluation
The diversity of graph properties necessitates varied evaluation
metrics for graph sampling. From a structural perspective, eval-
uation metrics can be grouped into degree-based, path-based, and
structure-based types. Degree-based metrics reflect changes in node
importance by assessing neighborhood properties, including degree
[46, 48], degree distribution [42], degree centrality [48], and eigen-
vector centrality [6]. Path-based metrics capture global positional
significance via betweenness centrality [12], closeness centrality
[15], and node connectivity [43]. Structure-based metrics quan-
tify local structural patterns through clustering coefficient [42, 16],
triangle count [5], and subgraph centrality [13].

Beyond topology, rich node attributes such as user profiles in so-
cial networks, render purely structural evaluations insufficient [37].
To address this, Seufert et al. [37] introduced joint metrics incor-
porating attribute and degree similarity. Wagner et al. [41] pro-
posed combining attribute and structural evaluations using Top-k
bias and Normalized Cumulative Group Relevance (nCGR). Lin et
al. [30] developed AB Sampling and AB-RIS, measuring attribute
preservation and structural deviation via attribute distribution and
connectivity characteristics.

Graph sampling also influences visual representations. Some
studies emphasize visual perception metrics over structural accu-
racy. Wu et al. [44] identified eight perceptual factors including
area coverage, cluster quality, and visibility of high-degree nodes.
Zhang et al. [48] introduced spatial and cluster-based visual crite-
ria, while Nguyen et al. [35] proposed visual metrics tailored for
proxy graphs to assess representational fidelity.

While most evaluations emphasize topology, attributes remain
undervalued. Our work fills this gap by analyzing attribute distribu-
tions, their correlations, and alignment with structure in sampling.

2.3 Attribute Features of Graph
In attribute graphs, nodes and edges are associated with attribute,
where each attribute represents a specific feature (e.g., user pro-
files, interests, or topics in social networks) [21]. This rich at-



tribute information facilitates applications in social network analy-
sis [10], recommendation systems[14], and biological studies [51].
Researchers analyze attribute characteristics to optimize feature
preservation in graph computations and improve downstream tasks.

Without considering the possible relationship with the structure,
the attribute characteristics of a graph can be reflected by the distri-
bution of attributes and the associations between them. Attribute
distributions provide statistical summaries of attribute sets. Ku-
mar et al. [23] proposed Information Expansion Sampling (IXS),
which prioritizes nodes with diverse attributes to preserve distri-
butional features, evaluated using metrics like the Kolmogorov-
Smirnov (KS) statistic. Lin et al. [30] introduced Attribute De-
viation (AD) to measure how well sampling maintains original at-
tribute proportions. Attribute correlations capture linear/nonlinear
relationships between attributes, revealing structural and semantic
patterns. Meng et al. [34] developed Coupled Node Similarity
(CNS), quantifying node similarity via co-occurrence matrices and
conditional probabilities to model complex attribute relationships.

Since attributes are inherently tied to topology, their interde-
pendence necessitates examining attribute-structure relationships at
node, edge, and community levels. The joint distribution of node
attributes with topological metrics (e.g., degree, centrality) [37] re-
veals feature patterns (e.g., high-degree node attribute concentra-
tion implies hub association) [1], which also facilitate comparative
analysis of pre- and post-sampling differences. At the edge level,
node attributes exhibit connectivity dependencies [7], where edge
changes can alter attribute-related shortest path lengths and connec-
tivity. For community-level, local attribute characteristics are typi-
cally evaluated through attribute importance and distribution [33].

Given the importance of node attributes, this work quantifies
sampling discrepancies via intrinsic attribute traits and their struc-
tural correlations, forming a hierarchical framework from global
distributions to local patterns.

3 TASK ANALYSIS AND SYSTEM OVERVIEW

3.1 Task analysis

To assess the differences in node attributes due to graph sampling
and develop a visualization system that intuitively presents and ex-
plores the impact of sampling on attribute information, we con-
sulted with two domain experts, E1 and E2. E1 is an experienced
scholar specializing in graph analysis and interactive visualization,
with extensive experience in data visualization and leadership in
multiple research projects involving large-scale network data. E2
is a senior data analyst from a renowned international IT company,
with long-term involvement in complex network analysis, focusing
on the impact of network sampling on structure and attributes, and
with rich practical experience in social networks, financial risk con-
trol, and bioinformatics. Over two years of collaboration and their
feedback helped us identify four core tasks:

T1: Establish a systematic framework for classifying attribute
differences. Current graph sampling evaluations mainly emphasize
topology while overlooking systematic analysis of node attributes.
Sampling can cause attribute-level changes like distribution shifts
and altered correlations, which are hard to capture from a single
perspective. Designing separate methods for each case is ineffi-
cient and harms system readability. A unified framework is needed
to classify and guide the analysis of attribute changes, enabling con-
sistent quantification and visualization.

T2: Integrate attribute–topology associations. Node attributes
are closely tied to graph topology, and many tasks like interest prop-
agation or financial risk assessment rely on their interplay. Focus-
ing only on attribute changes offers an incomplete view of sampling
impacts. It’s crucial to examine how attributes interact with topol-
ogy and how this relationship may shift after sampling. Domain
experts stress that analyzing attributes or structure in isolation risks

information loss. Thus, joint analysis of both should be integrated
into the evaluation to ensure a comprehensive assessment.

T3: Design quantitative evaluation metrics. Existing evaluations
of attribute differences rely on qualitative descriptions, lacking
measurable standards. To help users assess the impact of these dif-
ferences on analytical tasks, numerical metrics are essential. While
topological metrics are well-established, quantitative measures for
node attributes remain underdeveloped. Enhancing sampling as-
sessment rigor requires computable metrics that capture both at-
tribute variations and their interactions with topology.

T4: Develop an interactive visual analytics system. Sampling’s
impact on node attributes is often complex and non-intuitive, mak-
ing numerical statistics alone inadequate. An interactive visual ana-
lytics system is essential for multilevel exploration of how sampling
affects attribute information and its structural relationships. Inter-
action should also support identifying the sources of differences.

3.2 System overview

In line with the aforementioned task, we propose a novel evaluation
method to assess node attribute differences induced by graph sam-
pling, aiming to investigate its impact on attribute information. The
overall research framework is illustrated in Fig. 2.

First, we systematically analyze how graph sampling influences
attribute information and establish a taxonomy of attribute differ-
ences. This framework categorizes sampling-induced changes into
two primary classes: Attribute-Isolation and Attribute-Structure.
The former examines intrinsic attribute alterations, including dis-
tribution shifts and correlation changes, while the latter evaluates
attribute-structure consistency across three levels: Attribute-Node,
Attribute-Path, and Attribute-Community (R1, R2). Building on
this framework, we develop quantification methods tailored to dif-
ferent categories and data characteristics, measuring changes before
and after sampling (R3). To enhance interpretability, we design an
interactive visualization system (R4) featuring a multiview layout
with heatmaps, parallel coordinate plot, network views, etc., en-
abling intuitive exploration of sampling effects. The system also
supports user interaction for detailed analysis of attribute change
sources. Finally, we validate its effectiveness through case studies
and quantitative evaluations.

Figure 2: The pipeline of our visual analysis system, including clas-
sification of differences, construction of indicator systems, visual de-
sign and historical comparison.



4 ASSESSMENT OF ATTRIBUTE DIFFERENCE IN GRAPH
SAMPLING

4.1 Taxonomy of attribute difference in graph sampling

After a comprehensive literature review on graph analysis, we
summarized 21 key attribute information that users aim to pre-
serve during graph analysis tasks, which are detailed in Ap-
pendix A. Through discussions with two domain experts, based
on the frequently occurring node attribute information, we catego-
rized the differences in graph sampling into two main categories:
Attribute-Isolation and Attribute-Structure. Attribute-Isolation fo-
cuses on variations in node attributes themselves, further divided
into Attribute-Distribution and Attribute-Correlation. Attribute-
Structure differences examine the consistency of attribute-topology
relationships before and after sampling, encompassing three levels:
Attribute-Node, Attribute-Path, and Attribute-Community.

(1) Attribute-Isolation: This evaluates inherent changes in node
attributes, specifically whether sampling significantly distorts at-
tribute distributions and their correlations. Since many applications
depend on node attribute information, sampling may introduce bias
or loss of critical attributes, potentially undermining subsequent
analyses. We categorize Attribute-Isolation into two aspects: 1)
Attribute-Distribution: Sampling may alter the overall distribution
of attribute values, including shifts in mean, median, or variance.
For example, in social networks, user activity levels may origi-
nally follow a specific distribution but could skew toward highly ac-
tive users after sampling. 2) Attribute-Correlation: Sampling may
disrupt relationships between attributes, thereby affecting their in-
terdependencies. For instance, in academic networks, the original
strong correlation between a researcher’s influence and collabora-
tion count may weaken or disappear after sampling.

(2) Attribute-Structure: Beyond intrinsic attribute changes,
sampling also affects the relationship between node attributes and
topological structure. Key concerns include whether high-centrality
nodes preserve their attribute characteristics and whether nodes
sharing attributes maintain close connectivity. We systematically
classify these impacts into three types: 1)Attribute-Node: This as-
sesses the preservation of correlations between node attributes and
topological features post-sampling. For example, in kinship net-
works, the typically higher centrality of elder nodes may be dis-
rupted by sampling. 2)Attribute-Path: This evaluates alterations
in the association between attribute values and path characteris-
tics. For instance, in academic collaboration networks, the naturally
stronger connectivity among scholars with shared research interests
may diminish after sampling. 3)Attribute-Community: Communi-
ties, as dense node clusters, often represent social groups, research
domains, or functional modules, and are key to evaluating represen-
tation and clustering methods. This category focuses on the main-
tenance of attribute distribution within the community. Sampling
may retain global attribute distributions but obscure distinct prefer-
ences within specific user communities.

4.2 Quantification of attribute differences in graph sam-
pling

In this section, we introduce quantitative metrics to systematically
assess changes in attribute information and attribute–structure as-
sociations induced by sampling. The datasets used in this study are
undirected, unweighted graphs, with node attributes that are either
numerical or categorical. Categorical attributes are numerically en-
coded to ensure the generality and comparability of metric calcula-
tions. Given an original graph G with n nodes, and a sampled graph
G′ with n′ nodes, each node is associated with m attributes.

4.2.1 Calculation of Attribute-Isolation Difference

Attribute distribution: For each node attribute, we apply kernel
density estimation (KDE) to continuous attributes to partition the

value range, capturing distributional patterns while avoiding infor-
mation loss from fixed binning. As a non-parametric method, KDE
smoothly approximates data distributions and provides reliable es-
timates even with limited samples. For categorical attributes, the
categories themselves define the groups, ensuring effective preser-
vation during sampling. Let X denote a given attribute, with its
kernel density estimate defined as below:

f̂ (x) =
1
nh

n

∑
i=1

K
(

x− xi

h

)
(1)

Here, K(·) is the kernel function, h is the bandwidth param-
eter, and n is the sample size. We adopt the Gaussian kernel:
K(u) = 1√

2π
e−

1
2 u2

. The optimal bandwidth is selected via cross-
validation to obtain the best-fit distribution. After partitioning the
attribute into R intervals, we compute the frequency of data points
in each interval to construct the attribute probability distribution of
the original graph G as P = (p1, p2, . . . , pR). Similarly, we partition
the sampled graph G′ in the same way and compute its attribute
probability distribution P′ = (p′1, p′2, . . . , p′R). To quantify distribu-
tional deviations caused by sampling, we use Jensen–Shannon (JS)
divergence, a symmetric and interpretable metric based on Kull-
back–Leibler (KL) divergence. JS divergence offers greater stabil-
ity and is widely used for comparing one-dimensional distributions:

JSD(P∥P′) =
1
2

KL(P∥M)+
1
2

KL(P′∥M) (2)

Among them, M is the average distribution of P and P′.
After computing the distributional difference for each attribute,

we aggregate these values by taking their sum and average to obtain
the final attribute distribution difference metric:

di f f erence =
1
m

m

∑
j=1

JSD j (3)

Attribute-Correlation: Attribute-Correlation measures
whether the relationship between two attribute variables remains
consistent before and after sampling. To quantify this difference,
we employ the Pearson Correlation Coefficient to calculate the
correlation between attribute pairs and further evaluate the impact
of sampling on their correlation. Given two attributes X and Y
in the original graph G, their Pearson Correlation Coefficient is
defined as follows:

rXY =
∑

N
i=1(xi −X)(yi −Y )√

∑
N
i=1(xi −X)2

√
∑

N
i=1(yi −Y )2

(4)

We compute the Pearson Correlation Coefficients pairwise be-
tween the i-th attribute and the j-th attribute in both G and G′,
denoted as ri j and r′i j, respectively. By comparing the difference
between ri j and r′i j, we derive the Attribute-Correlation metric:

di f f erence =
∑

m
i=1 ∑

m
j=i+1 |ri j − r′i j|
C
(m

2
) (5)

Here, C
(m

2
)
=

m(m−1)
2 represents the total number of all possible

attribute pairs.

4.2.2 Calculation of Attribute-Structure Difference
Attribute-Node: We denote a node attribute as X and a correspond-
ing topological metric of the node (e.g., degree[46] or eigenvector
centrality[6]) as Y . To analyze their relationship, kernel density es-
timation is applied by partitioning the range of X into a intervals
and Y into b intervals, forming a joint probability distribution a×b,



denoted as P. In the original graph, each element of this distribution
indicates the proportion of nodes whose X and Y values fall within
the i-th and j-th intervals respectively.

Similarly, joint probability distribution P′ is computed for the
sampled graph. To quantify distributional changes between the
original and sampled graphs, we use the Wasserstein distance
(Earth Mover’s Distance, EMD), a metric from optimal transport
theory that considers both distributional differences and transport
cost. It is well-suited for comparing multidimensional distributions:

W (P,P′) = inf
γ∈Γ(P,P′)

∑
i, j,i′, j′

γ(i, j, i′, j′)d((Xi,Y j),(Xi′ ,Y j′)) (6)

Here, Γ(P,P′) represents the set of all possible transport plans,
that is, the ways to transform the original distribution P into the
sampled distribution P′. γ(i, j, i′, j′) denotes the quality of transmis-
sion from (Xi,Y j) to (Xi′ ,Y j′). d

(
(Xi,Y j),(Xi′ ,Y j′)

)
is the Euclidean

distance between two distribution elements.
Finally, we quantify the overall difference by computing the

mean Wasserstein distance between the distributions of all at-
tributes and node topological metrics before and after sampling:

di f f erence =
1
m

m

∑
k=1

Wk (7)

Attribute-Path: A path-based metric between nodes x and y,
denoted as pathxy (e.g., shortest path length or connectivity[43]),
is used. The average shortest path lengths of graphs G and G′ are
denoted as p and p′, respectively. Kernel density estimation is ap-
plied to partition the attributes of the nodes A and B into intervals
a and b, forming a distribution matrix of attributes. Each element
(i, j) in matrix P represents the normalized path length between the
pair of nodes whose attributes fall into the intervals Ai and B j. The
definition is given by:

Pi j =

∑
x,y∈Si j

pathxy

p

k
(8)

Where Si j denotes the set of node pairs whose attributes fall into
intervals Ai and B j, with k representing the number of such pairs. To
account for differences in graph size, path lengths are normalized
by the average path length p. The matrix P′ is computed similarly
for the sampled graph G′. If n = n′ = 0, indicating no node pairs
in this category, both Pi j and P′

i j are set to 0. If n ̸= 0 but n′ = 0,
meaning the attribute pair is lost after sampling, P′

i j is set to the

normalized maximum path length, path′max
p′ . The difference between

P and P′ is then computed using a weighted Euclidean distance,
where a weight Wi j adjusts the contribution of each attribute pair:

D = ∑
i, j

Wi j

√
(Pi j −P′

i j)
2 (9)

Here, Wi j =
|Si j|
|S|

represents the proportion of node pairs in the

attribute region (Ai,B j) relative to the total number of path pairs.
By introducing Wi j as a weight factor, we can reduce the influence
of intervals that have a small proportion but exhibit drastic changes
on the overall difference, while enhancing the contribution of in-
tervals with a relatively larger proportion. Finally, we compute the
average of weighted Euclidean distances over all attribute combi-
nations to obtain the final difference, as shown below:

di f f erence =
∑
i, j

Di j

C2
m

(10)

Attribute–Community: We first partition the original graph G
into c communities C1,C2, . . . ,Cc using the Louvain algorithm. For
each community Ci, we estimate the node attribute X distribution
via KDE, dividing it into a intervals to obtain the probability distri-
bution Pi = (p1, p2, . . . , pa). After sampling, we similarly compute
the distribution P′

i from the remaining nodes in Ci, using a uniform
distribution when the community is empty. The JSD is then used to
quantify the difference between Pi and P′

i as JSi = JSD(Pi,P′
i )

Considering the sizes of different communities, we introduce the
proportion of community nodes as a weighting factor to ensure that
changes from smaller communities do not disproportionately im-
pact the global results. Let Ri denote the proportion of nodes in
community Ci relative to the total number of nodes in the original
graph. The overall difference of attribute X across all communities
is then calculated as the weighted Jensen-Shannon Divergence:

DX =
c

∑
i=1

Ri · JSi (11)

The overall difference is computed by averaging the weighted
JSD values across all attributes, yielding a quantitative metric of
sampling-induced attribute-community differences, as shown:

di f f erence =
1
m

m

∑
i=1

Di (12)

5 VISUALIZATION OF SAMPLING DIFFERENCES IN AT-
TRIBUTE GRAPHS

To visually present the differences between the original and sam-
pled graphs, we design an attribute-aware visual analytics system
for sampling analysis, as shown in Fig. 1.

5.1 Attribute-Isolation Visualization
Parallel coordinates plots are commonly used to visualize multi-
dimensional data and relationships between dimensions. In our
Attribute-Isolation visualization design, we integrate parallel co-
ordinates with statistical distribution plots and correlation analysis
views to intuitively compare Attribute-Distribution and Attribute-
Correlation between original and sampled graphs. As shown in
Fig. 1 (d), each vertical axis in the parallel coordinates plot rep-
resents a node attribute. Blue polylines denote nodes retained after
sampling, connecting their attribute values across dimensions to il-
lustrate their positions in the multidimensional space. Gray poly-
lines represent discarded nodes, providing a reference for compar-
ison and highlighting sampling-induced coverage changes. Adja-
cent to each attribute axis, area charts visualize distribution shifts
before (left) and after (right) sampling. At the top of each axis,
stacked bar charts quantify changes in Pearson correlation coef-
ficients between attributes. The filled bars indicate pre-sampling
correlation values, while the outlined bars represent post-sampling
values. This side-by-side comparison enables clear identification of
sampling effects on attribute relationships.

5.2 Attribute-Structure Visualization
Attribute-Node: The attribute-node metrics examine whether the
relationships between node attributes and topological metrics (e.g.,
degree centrality, eigenvector centrality) remain stable after sam-
pling. We employ a matrix heatmap to visualize the joint distribu-
tion of attributes and topological metrics in both original and sam-
pled graphs. The stacked histograms on the left side depict the pro-
portion of differences of each attribute. Users can click to select
specific attributes and expand their corresponding heatmap views.
Dual-view comparison design displays the original joint distribu-
tion (left) alongside the sampled distribution (right), facilitating di-
rect comparison of sampling-induced variations. In the heatmaps:



the x-axis represents node attributes, the y-axis represents topologi-
cal metrics. The color intensity indicates the proportion of nodes
that are simultaneously distributed within the specified attribute
range and the corresponding structural indicator range, with darker
shades indicating higher proportion. Additionally, users can click
on any heatmap cell to filter corresponding nodes in both the Node-
Link View and parallel coordinates plot for detailed inspection.

Attribute-Path: The Attribute-Path metric captures variations
in path characteristics across different node attribute combinations,
while also accounting for their proportions among all paths. It
helps users assess the consistency of path structures and identify
attribute combinations significantly impacted by sampling. To vi-
sualize these differences, we designed a glyph view ( Fig. 3), where
each glyph represents an attribute combination. The internal bar
chart shows path metric changes. Height differences reflect path
variations. Waveform graph illustrate proportion changes: the left
and right heights represent the proportion of paths before and after
sampling, respectively. Color intensity encodes the magnitude of
Attribute-Path differences. The stacked bar allows users to compare
the differences brought by different attributes and the Attribute-Path
differences between attributes under a single attribute. By clicking,
users can flexibly select attribute combinations for detailed anal-
ysis, while glyph interactions highlight corresponding nodes and
parallel coordinate segments for focused exploration.

Figure 3: Glyph design and visualization of Attribution-Path differ-
ences.

Attribute-Community: A community is inherently a local
structure, representing a tightly connected group of nodes within
the network. We augment the node-link diagram with heatmap and
provide interactive features for inspecting local details. The color
gradient from green to red indicates the magnitude of differences,
allowing users to quickly identify which communities exhibit sig-
nificant shifts in attribute distribution during sampling. When a user
clicks on a specific community, the system dynamically expands to
display its sampling status. Here, a donut chart illustrates the pro-
portion of retained nodes, blue representing preserved nodes, while
light blue denotes filtered-out nodes. Simultaneously, the parallel
coordinates update to reflect the node retention status of the selected
community.

5.3 History Visualization
To facilitate intuitive comparison of how different sampling strate-
gies and rates affect graph quality, we designed a history panel
(Fig. 1 (b)). This panel presents line charts that display the val-
ues and trends of various metrics across sampling iterations, help-
ing users track the stability and distinctions among sampling re-
sults. Each line chart corresponds to a specific metric category,
with the x-axis representing different sampling methods and their
respective rates, and the y-axis indicating metric values. Users can
select a specific sampling iteration by clicking, triggering synchro-
nized updates in other visualization views (e.g., Attribute-Isolation
and Attribute-Structure correlation). The history visualization eval-
uates method stability across conditions, revealing consistent per-

formance or advantages at specific sampling rates and enabling
anomaly investigation when needed.

6 EVALUATION

6.1 Case Study
To validate the effectiveness of our proposed graph sampling evalu-
ation method and its visualization system, we engaged two domain
experts (E1 and E2) in system evaluation and analysis. The ex-
perimental dataset comprises the academic network of IEEE VIS
conference papers (2015–2021), consisting of 786 nodes and 6,101
edges. Each node represents a paper published at IEEE VIS, and an
undirected edge connects two papers if they share at least one com-
mon author. Each paper includes five key attributes for analyzing
sampling differences: publication year, download count, reference
count, citation count, and author count.

6.1.1 Exploring differences under a single sampling method
In this case, we invited E1 to evaluate our visualization system. Af-
ter loading the graph dataset, E1 selected Degree Centrality as the
node topology metric and Shortest Path as the path topology met-
ric. The sampling strategy was configured as Simple Random Walk
(SRW) with a 30% sampling rate. The results are shown in Fig. 4
(2). Based on the output, E1 began by examining attribute changes
using the Attribute-Isolation panel (Fig. 4 (4)). The parallel co-
ordinates plot revealed distinct distributional differences between
sampled and retained nodes across various attributes. The accom-
panying streamgraph highlighted notable shifts in the distributions
of AuthorsCount and Downloads, while the remaining attributes
exhibited relatively stable patterns. These observations were fur-
ther supported by the bar charts above the attribute axes. E1 then
explored changes in attribute correlations. The hybrid bar charts
revealed an unexpected pattern: while CitationCount and Down-
loads had weak correlations with Year in the original dataset, they
appeared strongly negatively correlated after sampling. E1 noted
that this could mislead users into believing that recently published
papers tend to have fewer citations and downloads, potentially re-
sulting in inaccurate interpretations.

Next, E1 analyzed the Attribute-Node visualization panel (Fig. 4
(5)). The stacked bar chart indicated significant differences in the
relationship between Downloads and Degree Centrality before and
after sampling. To investigate further, E1 interactively unfolded the
joint distributions of these two attributes. The matrix heatmap re-
vealed a pronounced shift in their correlation. For instance, in the
original data, papers with 500–1000 Downloads generally had De-
gree Centrality values between 0.005 and 0.01, a pattern that did not
persist in the sampled data. This disruption decouples attribute in-
formation from the graph’s structural properties, thereby distorting
interpretation of key features.

In the Attribute-Path visualization panel (Fig. 4 (7)), E1 observed
via stacked bar charts that the shortest paths between Year and Au-
thorsCount changed most significantly. A broader examination of
Attribute-Path difference revealed that, in nearly all intervals, the
ratio of shortest path to diameter increased after sampling. E1 at-
tributed this to the inherent bias of SRW sampling, which favors
highly connected nodes, thus disrupting certain path structures and
resulting in longer shortest paths in the sampled graph. To iden-
tify the source of these differences, E1 examined the heatmap and
found that nodes with AuthorsCount = 5 exhibited the most pro-
nounced changes in shortest path length across the Year dimension.
A follow-up inspection using the streamgraph indicated that this
was due to the dominance of 5-author nodes in the original graph.

In the node-link diagram, E1 used the heatmap (Fig. 4 (3)) to
analyze Attribute-Community differences. While most communi-
ties showed minimal deviation, community C in the upper-right
corner appeared distinctly dark red, indicating significant differ-
ences. Clicking this community prompted the system to dynam-



Figure 4: (1)-(3) display the original graph network, sampled graph, and heatmap visualizing Attribute-Community differences respectively;
(4) compares Attribute-Distribution and Attribute-Correlation before and after sampling; (5) presents joint distributions of attributes with degree
centrality across sampling conditions; (6) provides detailed visualization for in-depth examination of Community C; (7) visualizes Attribute-Path
differences in the sampled graph.

ically display its sampling characteristics via a donut chart and a
parallel coordinates plot (Fig. 4 (6)). The donut chart showed that
approximately 70% of nodes in this community were removed dur-
ing sampling. The parallel coordinates plot further revealed that this
substantial node loss caused marked distributional shifts across all
attributes. These findings suggest that although sampling may pre-
serve global attribute distributions, it can significantly distort local
community characteristics, potentially leading to misinterpretation.

After completing the analysis, E1 expressed strong approval of
our system, stating: “The system’s synchronized multi-view visual-
izations and interactive features effectively reveal hierarchical data
differences and enable rapid identification of key variations, sup-
ported by evidence explaining their causes.” He emphasized that the
system facilitates detailed exploration of micro-level attribute dif-
ferences, enhances understanding of data integrity post-sampling,
and improves the reliability of graph-based analysis.

6.1.2 Comparison across different sampling strategies

In this case, E2 evaluated the performance of various sampling tech-
niques in preserving graph attributes using our analytical system.
E2 applied four sampling methods: BFS, DFS, RNS, and TIES,
each with a fixed 30% sampling rate. The system automatically
recorded the results and generated visualizations, as shown in Fig. 5
(1). Comparative analysis revealed that RNS performed best in pre-
serving attribute distributions and showed strong results in main-
taining attribute correlations, though it was average on other met-
rics. E2 attributed this to RNS’s uniform node selection probability,
which promotes balanced attribute retention. This was further sup-
ported by parallel coordinates visualization in Fig. 5 (2).

In contrast, BFS exhibited significant differences in both
Attribute-Community and Attribute-Distribution metrics. The
heatmap (Fig. 5 (3)) showed that while some communities were
largely preserved, others experienced near-complete node loss
(marked in dark red). E2 explained that BFS’s local exploration
from seed nodes tends to retain nearby communities while ne-
glecting those beyond its limited reach, leading to distorted at-
tribute distributions in peripheral regions. DFS, on the other hand,
showed the greatest deviation in Attribute-Path relationships. The
Attribute-Path view (Fig. 5 (4)) revealed a marked increase in the
ratio of shortest path to diameter across nearly all attribute pairs

post-sampling, consistent with DFS’s deep-path traversal pattern.
TIES, however, achieved the most consistent performance across
all metrics, particularly minimizing deviations in Attribute-Path. E2
attributed this to TIES’s approach of preserving all nodes connected
to sampled edges, which effectively maintains the graph’s structural
integrity and reduces path fragmentation.

After the evaluation, E2 praised the system for efficiently as-
sessing sampling strategies in preserving attribute properties and
attribute-topology relationships. He particularly appreciated the
history panel’s interactive design for intuitive, side-by-side com-
parisons and in-depth analysis.

6.2 Quantitative analysis

To assess the effectiveness of our proposed metrics in capturing at-
tribute differences between sampled and original graphs, we con-
ducted a quantitative study using a patent citation dataset com-
prising 4,533 nodes and 7,382 edges. Each node was annotated
with five attributes: publication year, country, category, group,
and score. In consultation with domain experts, we selected eight
of the most used graph sampling strategies in their daily work:
Breadth First Sampling(BFS), Depth First Sampling(DFS), Forest
Fire(FF), Snowball Sampling(SBS), Random Walk(RW), Random
Node Edge(RNS), Random Edge Sampling(RES) and Topology-
Induced Edge Sampling(TIES), each evaluated under four sampling
rates (5%, 10%, 20%, 30%). Metric values were averaged across
rates for comparison. Detailed results are shown in Tab. 1.

The experimental results demonstrate significant variations in
performance across different sampling methods when evaluated
against various difference metrics. Notably, BFS exhibited the
poorest performance across multiple categories, particularly in
Attribute-Distribution, Attribute-Node, and Attribute-Community
metrics. In contrast, TIES sampling consistently outperformed
other methods, demonstrating exceptional stability in maintain-
ing Attribute-Node, Attribute-Path, and Attribute-Community re-
lationships. A detailed analysis reveals that RNS achieved op-
timal preservation of Attribute-Distributions, while BFS induced
the most substantial distributional deviations. This suggests that
random node selection better maintains global attribute distribu-
tions, whereas BFS’s breadth-first expansion leads to uneven sam-
pling by over-representing certain regions and severely neglecting



Figure 5: (1) Shows the metric values of differences for each category under the four sampling methods; (2)(3)(4) Display the details of the
differences.

Table 1: The difference values across sampling strategy, with bold black text indicating the best-performing strategy and the underline text
highlighting the worst-performing strategy for each difference category.

Category
Metrics

Strategies
BFS DFS FF SBS RW RNS RES TIES

Attribute-Isolation
Attribute-Distribution 0.0197 0.0093 0.0066 0.0055 0.0079 0.0017 0.0045 0.0031
Attribute-Correlation 0.0261 0.0303 0.0215 0.0263 0.0193 0.0229 0.0321 0.0278

Attribute-Structure
Attribute-Node 1.4403 0.9569 0.9090 0.6309 0.3567 0.3868 0.3882 0.3415
Attribute-Path 0.2371 0.8266 0.1451 0.0951 0.0427 0.1857 0.0984 0.0084

Attribute-Community 0.0562 0.0469 0.0432 0.0349 0.0342 0.0421 0.0431 0.0301

others, thereby disrupting distributional equilibrium. Regarding
Attribute-Correlation, DFS caused the most significant alterations
due to its depth-first traversal pattern, which follows extended paths
and consequently distorts correlation structures. Conversely, RW
sampling preserved original attribute correlations most effectively
through its uniform graph coverage. In Attribute-Node, BFS also
performed poorly, while TIES excelled by best preserving associa-
tions between attributes and node topological metrics. This advan-
tage stems from TIES’s edge-induced sampling mechanism, which
maintains complete node sets and thus better conserves Attribute-
Structure relationships. For Attribute-Path metrics, DFS produced
the most severe distortions, whereas TIES most effectively main-
tained original relationships between attribute and path length. Fi-
nally, in Attribute-Community evaluations, BFS most dramatically
affected community structures, disproportionately preserving some
communities while severely losing others.

Additional observations revealed that FF and SBS, as variants of
BFS and DFS respectively, exhibited similar sampling characteris-
tics to their parent algorithms while demonstrating modest overall
improvements. RES showed intermediate performance across all
difference metrics, without particularly notable strengths or weak-
nesses. The above experimental results have been recognized by
experts and are consistent with our prior knowledge, further demon-
strating the effectiveness of our work.

6.3 Discussion

Attributes and topology jointly define graph information, and in-
tegrating both enhances sampling evaluation. We developed a vi-
sual analytics system to explore attribute-related differences from
sampling, with case studies and quantitative analyses demonstrat-
ing its effectiveness in tracking differences and comparing strate-

gies. However, several challenges remain for future work: (1)
Scalability: The Attribute-Isolation view which combines paral-
lel coordinates with area and bar charts, effectively conveys at-
tribute distribution and correlation differences. However, as the
number of attributes increases, visual clutter may arise. Further-
more, although the system performs well on small and medium-
sized graphs, handling the complexity of large-scale and multi-
attribute graphs remains a challenge, which may be addressed
through grouped attribute visualization and progressive rendering
techniques. (2) Weakness of optimization support: Although the
system helps identify differences and analyze sampling behavior,
it does not guide algorithm refinement. Leveraging difference pat-
terns to optimize sampling strategies is an important direction. (3)
Attribute completeness: Our current evaluation focuses on node at-
tributes. To achieve more comprehensive sampling assessment, fu-
ture work should incorporate edge attributes, which often carry im-
portant semantic information. This requires designing metrics and
visual encodings that capture differences on both nodes and edges.

7 CONCLUSION

In this paper, we present an attribute-aware framework for
evaluating differences in graph sampling by integrating node
attributes with topological structures. Based on this, we propose a
taxonomy comprising Attribute-Isolation and Attribute-Structure
correlation, further detailed into five difference types. For each,
we design customized quantitative metrics and a multiview visual
analytics system combining heatmaps, parallel coordinate plot,
and topology-based views. Case studies and quantitative results
confirm the system’s effectiveness in revealing sampling-induced
attribute changes and supporting informed analysis and method
selection.
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